
Question Bank
Extracting questions from PDF

Huzefa Chasmai (15D170013), Akshith Reddy (150050074)
Guide: Prof. Kameswari Chebrolu

May 7, 2019

Abstract

Question Bank is a collection of questions organized according to chapter,
difficulty, etc. Using the question bank to automate the task of generating new
question papers according to specification of constraints like percentage allotted
to chapter, marks and difficulty would save a lot of manual time. To this end,
the task of populating the database with questions from already available data,
in the form of question papers, is a major hurdle. PDFs are the most common
format available for question papers, and hence automated extraction of ques-
tions from PDFs are imperative. We extend the current work[1] by improving
the PDF extraction algorithm and changing the architecture to make it more
robust. Furthermore, correctness guarantees for the automated extraction is
difficult and hence some amount of manual intervention is necessary. We tackle
this by building our Visual Editing Tool which provides the user with a web
based tool for manual verification and easy modification of extracted content.

1

Contents

1 Introduction 4

2 Related Work 5
2.1 Extraction from PDFs . 5
2.2 Interface for PDF Interaction . 5
2.3 Extraction from latex . 5

3 Extending the PDF Extraction Program 6
3.1 Existing code Overview . 6
3.2 Migration from Python2 to Python3 7
3.3 Modifications to the existing code . 7

3.3.1 Input the regex used for detection 7
3.3.2 Complete creation of annotated boxes 7
3.3.3 Fixing problems with PDFMiner 7
3.3.4 Robust Indexing . 8

3.4 Major Architectural Changes . 8
3.4.1 Extraction of Subquestions, Answers and Metadata 8
3.4.2 Font based detection of Answers 8
3.4.3 MCQ Options Detection . 9
3.4.4 Changing the Model for storing the elements 9
3.4.5 Extracting the elements in the form of text 9

4 Visual Editing Tool 11
4.1 Description . 11
4.2 Front End Program Flow . 11

4.2.1 Uploader . 11
4.2.2 Initialize Input . 11
4.2.3 Area Select . 13
4.2.4 Modal View . 13
4.2.5 Display Saved Text for Database 14

4.3 BackEnd Architecture . 15
4.3.1 dbView . 15
4.3.2 savePDF . 17
4.3.3 submitChanges . 17
4.3.4 getTextForSelection . 18
4.3.5 getAllSelections . 19

2

5 Implementation Details 22
5.1 PDF Extraction . 22
5.2 BackEnd . 22
5.3 FrontEnd . 22

6 Conclusion and Future Work 23
6.1 Future Work . 23

6.1.1 PDF Extraction . 23
6.1.2 FrontEnd UI . 24

7 Acknowledgement 25

3

1 Introduction

Most of the professors would find it convenient to have a database of questions and
answers from which they can generate new question papers. A tool which populates
this database would be very useful since a huge source of questions are previous
question papers that are already present. A tool that automatically extracts questions
and answers from these papers and populate them into a database would be desirable.

The question papers available online are in many different formats, amongst which
PDF is the most common. Furthermore loss-less conversion to PDF format is sup-
ported by most of the other formats. Therefore, a tool to extract question and answers
from the PDF was imperative.

Due to high variability in the format or style of the question papers online, perfect
automated extracted would be difficult to achieve. Therefore the tool should involve
certain amount of human intervention to guarantee correctness. To this end, the tool
should provide the users with an interface where they can easily modify the extracted
elements to fit to their needs.

4

2 Related Work

2.1 Extraction from PDFs

Our project is an extension to the RnD project work done by Sai Sharath and Nagen-
dra Reddy[1]. They had worked on a python2 based CLI project that takes question
paper PDF as input and creates annotation boxes around the questions. The user
needs to edit these annotated questions using third party tools like Foxit Reader and
save the new formatted pdf. The new annotated pdf is given as input to an extractor
that extracts the text content and the images in the form of a latex file. The latex
captures information like the font style so that the questions can be reproduced as
close as possible to the original pdf. We will be extending the work done by them.

2.2 Interface for PDF Interaction

[2] built a web application using the Vue.js (A progressive JavaScript framework). The
application is used to create boxes over PDFs and is able to detect the coordinates of
the boxes created in the PDF. They generate code which can then be used to extract
just the text content out of the bounding boxes. This code has to be used separately
using the PDFQuery or tesserac libraries in Python2.

2.3 Extraction from latex

For the purpose of populating the question bank, a similar tool is being developed
to extract the questions and answers from latex versions of the question papers is
being done as part of a MTech Project here. This project also deals with storing the
questions into a database using an extractor working with latex question papers as
input.

5

3 Extending the PDF Extraction Program

This section details modifications to the existing code to fix certain issues and our
additions to the algorithm[1] of Question Extraction from PDFs.

3.1 Existing code Overview

This section is borrowed from [1]
Create annotation boxes around each question region. The annotated PDF can

then be inspected manually in a tool such as foxit reader for any adjustments of the
annotations. After these manual adjustments this tool extracts each annotated region
as a question along with images and other metadata.

The above description lead to the architecture taking the above form. The Input
PDF first goes through PDF Miner for the extraction of PDF layout in the form of
a tree along with coordinates of each layout. The extracted layout also contains all
the metadata of text, images etc... The text part of the entire layout is subjected
to a regex pattern matching based on which the layout of individual questions is
determined. This extracted layout is used to draw annotation boxes around each
question with the help of PyPDF2 library. User can then make adjustments to the
annotated PDF and submit it for extracting each question as a latex text. The
adjusted PDF then goes through PyPDF2 for the extraction of annotation boxes.

6

These annotation box boundaries are used to extract the text and images inside
these boxes. This is performed using PDF miner and PyPDF2 (for png images). The
extracted text is then converted to latex using Pylatexenc. The images and font styles
are adopted into the latex programmatically.

3.2 Migration from Python2 to Python3

The existing code was written in Python2. We migrated the code to Python3 with
a few minor modifications of changing the versions of pdfminer library and slight
modifications to the code for sorting and encoding byte arrays as string. This was
done so that no compatibility issues arise in the future.

3.3 Modifications to the existing code

3.3.1 Input the regex used for detection

Working with a fixed set of regex for question detection is often inefficient and doesn’t
cover all scenarios. The ideal case is to input the regex for question detection based
on the text in the PDF, which is incorporated in the modified code.

3.3.2 Complete creation of annotated boxes

The existing code creates annotated boxes around questions after detecting them
but the boxes displayed are incomplete in nature. This problem especially occurs
when the question is spanned across multiple pages but the code only generates the
annotated box for a part of the question present on the initial page. This issue is
fixed by generating an extra box for all the lines starting in a page which haven’t
been bounded by any box. In such scenarios, these boxes are assumed to be the
continuation of last annotated box in the previous page.

3.3.3 Fixing problems with PDFMiner

The tool used for extracting text from PDF - PDFMiner is not exactly accurate. For
example, there can be scenarios in which the extracted lines may not be in the sorted
order. Hence, a pre-processing step in the form of position based sorting has to be
taken on the extracted lines for better working of the code. Also, zero width/height
lines must be removed to eliminate any problems caused during text extraction. Limit
on the bottom position of the lines extracted is set to remove irrelevant lines like page
number, unnecessary footers, etc.

7

3.3.4 Robust Indexing

The existing code has an issue of getting the index of a particular set of lines from
the entire array by using the text of the line. This approach is not robust as there
can be two or more lines in the PDF with same text. This issue is fixed by storing
the indexes of the lines corresponding to the set when generating the set itself.

3.4 Major Architectural Changes

3.4.1 Extraction of Subquestions, Answers and Metadata

The question bank database structure supports multi-level question storage in the
form of Questions and Sub Questions. Other than that they have separate fields for
metadata like marks. In order to match these we provide the user with options to
input separate regexes to detect subquestions, answers and other metadata like marks
(we refer to them collectively as elements henceforth). The code for the metadata is
robust so that it can be expanded to include additional metadata other than marks
in the future. These functionalities are added in a robust and independent manner
so that question papers of different formats (for e.g. QQ...AAA... or QAQA...)
can be extracted easily. In the first case though, the mapping of questions to the
corresponding answers is to be done manually by the user.

3.4.2 Font based detection of Answers

The regex based approach to detect an answer element in the text may not work
because there need not be a fixed delimiter to separate answers from the rest of the
question. Often in such cases where there’s no delimiter for the answers, they are
displayed as either bold, italic or an entirely different font from the font used for the
question. In such cases, we can use the change in the font/style of the text to partition
the answer and question elements in the text. The pseudocode for the approach is as
follows

def detectAnswerPosition(lines):
returns the top two fonts(including styles) in the entire text
max_fonts = detectMaxFonts(lines)
returns the array of leading font used in each line
font_array = maxFontForLine(lines)
returns the index where the font changes from one max_font to another
index = detectChangeFont(font_array)
denotes that the answer starts at this index
return index

8

3.4.3 MCQ Options Detection

‘MCQ Question Papers’ i.e., question papers where all the questions were of the mul-
tiple choice format proved to be an important distinction from the rest of the papers
which were of the descriptive type. So we decided to analyze this case separately, we
ask the user to specify if the format of the paper is MCQ, and then we ask the user
to give the regexes to detect the options of the questions. This was done in order
to make it easier for the user to add/remove options, and basically treat the options
object independently from the question instead of it being a part of the question.

3.4.4 Changing the Model for storing the elements

Previously, since only the questions were being detected, the model of storing the
elements was in the form of an annotation box which consisted only of the bounding
box coordinates. In our current architecture since additional elements other than
questions are included, a need to update this model arises. We use a selections object
for each element. The structure of the selection object can be thought of as an
abstract class as follows :

class SelectionObject(AbstractBaseClass):
id : #Stores unique identifier of the element
type : #Element Type (MainQues, SubQues, Answer)
color : #Used to store the color in which the bounding box
name : #The name of the element {e.g. Main Ques 1, Sub Ques 2}
marks : #Marks corresponding to the element (empty for answers)
qnum : #Main Question Number associated with the element
textData: #The text in the element bounding box
question_type : #Whether MCQ or descriptive
options : #In case of MCQs, list of options associated with question
coordinate : #The bounding box coordinates -> object of Coordinate

class Coordinate(AbstractBaseClass):
page : #Page number of the PDF in which element present
pageOffset : #Offset from start of PDF to start of Page(#page)
height : #height of the element
width : #width of the element
left : #x position of the left top corner
right : #y position of the left top corner

3.4.5 Extracting the elements in the form of text

We changed the functionality from extraction of elements as latex in the previous
work to extraction in the form of text. This was because eventually the extracted

9

components were going to get saved in the form of fields of database objects and this
could be achieved using a text based extraction format which is much simpler. The
additional benefits of the latex based extraction can be incorporated in the form of
meta-data specifying the font style, color, etc.

10

4 Visual Editing Tool

This section describes the idea and the program flow of our Visual Editing Tool. This
is a visual web application with the purpose of allowing users to manually verify and
edit the extracted elements and the corresponding selection boxes.

4.1 Description

We are building a visual tool which integrates the web browser with the necessary
functionalities required to perform over a PDF for this project. The tool consists of a
Vue.js based FrontEnd and a python Flask based BackEnd. The FrontEnd is a web
application to upload the PDFs, create the necessary selection boxes, view and edit
text corresponding to the annotations and submit the final changes. The BackEnd
listens to the requests from the FrontEnd and serves them with appropriate response.
The visual interpretations in FrontEnd are a result of these responses. More on the
details are described below

4.2 Front End Program Flow

4.2.1 Uploader

This component contains is the section to drag and drop pdfs or browse them through
your local files. Once uploaded the PDF will be displayed in the main area as shown
in (Figure 1).

4.2.2 Initialize Input

This component corresponds to user inputs for some of the fields mentioned be-
low. These fields (only some compulsory) are necessary for the auto detection of
the elements and the button <initialize bounding boxes> to generate and display the
bounding boxes on the PDF. The input for automating boxes consists of the following
parts

• Main Question Regex: Regex pattern to identify the start of a main ques-
tion

• Sub Question Regex: Regex pattern to identify the start of a sub question

• Answer Regex: Regex pattern to identify the start of a answer

• Marks Regex: Regex pattern to identify the marks

11

Figure 1: Initial Page

• Style based checkbox: Whether or not to use font/style change to detect
answer

• MCQ checkbox: Whether or not all questions in the PDF are MCQ

• MCQ Regex: Regex pattern to identify the start of the options

• Time Given for Entire paper: Enter the total exam duration

• Total Marks for Entire paper: Enter the total exam marks

Total duration and total marks are used to adjust the scale of the marks extracted
from the PDF. Also, when you don’t find the relevant option to select in any of
the Regex fields, you can click on Other and entire the desired regex input in the
description.

12

Figure 2: After Initializing Bounding Boxes using our algorithm

4.2.3 Area Select

This component corresponds to a selection box displayed on a PDF. The color of
the box determines what type of an element the selection corresponds to (red - main
question, blue - sub question, green - answer). Additionally the component contains
buttons like to delete the component and <Edit> to open a Modal View.
The functionalities of a modal view are described below. Additionally you can create
a new selection box by dragging the cursor over the concerned area of the PDF.

4.2.4 Modal View

Upon clicking the edit button in the AreaSelect, a modal view pops (Figure3) up on
the screen. This modal view has the following components:

• Selection Type: The type of the selection (editable)

• Marks: The marks obtained (editable)

13

• Scale: This number is the scale to be multiplied with for marks to be displayed
as a function of time in minutes

• TextData: The text data corresponding to the element

• Corresponding Element: This contains the text data of the corresponding
element (for subquestion/question it is the corresponding answer, and for answer
it is the corresponding question/subquestion if it exists)

• Save Changed Data Button: This button saves the changes done in the
local variable at the FrontEnd.

• Close Modal: Close the modal and go back to the home screen

Figure 3: Edit Modal View for editing the selection Boxes

4.2.5 Display Saved Text for Database

Upon clicking the save Data button, the BackEnd extracts the elements from the
updated selection boxes and saves it in the database. Upon clicking this button, a
link appears to view this saved data. The link to saved data shows the extracted
elements in a text file (Figure 4) separated by the delimiters of the form : ”Main
Question: ——————”. In addition to this, the necessary images get saved in

14

Figure 4: Viewing the saved data

the BackEnd in the images directory in the server. The images are referenced in
the text file by mentioning their names along with the corresponding element for
reproducibility of the question from the text file.

4.3 BackEnd Architecture

This section details the BackEnd architecture and also the FrontEnd-BackEnd-program/database
interactions (Figure 5). The BackEnd is the key for communication between the Fron-
tEnd and the program. We will analyze these interactions by looking at the uses and
the flow across the various routes present at the BackEnd.

4.3.1 dbView

• Input

– file name: name of the PDF file for which we require the saved data

15

Figure 5: Architecture

• Output - returns the entire contents of the text file in which the data corre-
sponding to the PDF file is saved

• FrontEnd Side - Upon clicking the ’View Saved Data’ link, it opens in a new
tab with a GET request with this route is sent to the BackEnd. The pdf file
name is incorporated as part of the get request and the received response is
displayed on this page

• Program Side Algorithm

def return_files_tut(input):

Get the text file path corresponding to the PDF
text_filepath = get_saved_filepath(filename)

#Get text data from the file
saved_data = readfile(text_filepath)

#Return the saved data
return saved_data

16

4.3.2 savePDF

• Input

– file: The PDF file which is to be saved

• Output - saves the received PDF file in the desired location of database

• FrontEnd Side - Upon uploading a PDF file, this route for BackEnd is being
called using an ajax POST request with the entire file present in the request

• Program Side Algorithm

def savePDF(input):

Get the file object from request
file = extract_file(request)

#Save the file in the desired location
file.save(filename, pdf_locatiom)

4.3.3 submitChanges

• Input

– file name: name of the file to access from DB and to save the extracted
text and images in the DB

– selections: List of all the selection objects in the FrontEnd

– pdf dimensions: Dimensions of the PDF

• Output - returns success or failure. We store the text corresponding to all the
selection boxes in the BackEnd in a file names file name.txt

• FrontEnd Side - after modifying all the boxes to suit their requirement, the user
clicks on the ’Save Changes’ button that leads to an AJAX call to this route

• Program Side Algorithm

def extract_text_from_pdf_selections(input):

#Preprocessing to get the layout and the images
pdfInput = PdfFileReader(open(pdf_path, "rb"))
image_res = get_image_res(pdfInput)

17

layout = get_PDF_layout(pdf_path)

page_ht = pdf_dimensions['height']

#Sort the selections list in ascending order of y position
sorted_selections = get_sorted_selections(selections)

text_list = []

#Iterate throgh each selection in the selctions list
for curr_selection in sorted_selections:

#Get coordinates in the BackEnd dimension scale
curr_bbox = get_bounding_box_coords(

curr_selection['coordinates'], page_ht)

#Get a list of all images in this box
LT_list_images = get_LT_image_list_from_box(

layout[curr_selection['coordinates']['page'] - 1],
curr_bbox[0], curr_bbox[2], curr_bbox[1], curr_bbox[3])

#Extract the text from the current selection
curr_text = get_text_corr(curr_selection)

#Save the images and link them in the text file
curr_text_add += save_image(LT_list_images,

curr_selection, image_res)

#Add current selection text in the list
text_list.append(curr_text)

#Write the text in the DB text file
file = open(db_path, "w+")
file.write("\n".join(text_list))

return text_list

4.3.4 getTextForSelection

• Input

– file name: name of the file to access from DB

– page num: page number of PDF

– pdf dimensions: PDF dimensions

– coordinates: Coordinates of the selection

18

• Output - returns the text extracted from the selection in consideration

• FrontEnd Side - while making a new selection on the PDF by dragging a box,
we need the text corresponding to the box to be displayed to the user in the
modal upon clicking Edit. This route is called using the AJAX query.

• Program Side Algorithm:

def extract_text_from_current_selection(input):

#Height of the pdf
page_ht = pdf_dimensions['height']

Get layout(pdfminer) object of the PDF
layout = get_PDF_layout(pdf_path)

#Get the coordinates in the BackEnd pdf dimension scale
curr_bbox = get_bounding_box_coords(coordinates, page_ht)

#Get all the lines within the box
LT_list = get_LT_line_list_from_box(layout[page_num - 1],

curr_bbox[0], curr_bbox[2], curr_bbox[1], curr_bbox[3])

#Sort the lines so that text displayed is in order
LT_list = get_sorted_lines(LT_list)

#Extract the text out from each of the lines
text_data = get_text_from_LTList(LT_list)

return text_data

4.3.5 getAllSelections

• Input

– file name: name of the file to access from DB

– regexes: regex Pattern corresponding to question, subquestion, ans and
metadata

– use style: boolean for whether to use style or not

– pdf Dimensions: the dimensions of the pdf

– question type: boolean for whether paper is MCQ

– mcq reg: Regex for MCQ options

19

• Output - returns a list of selection objects corresponding to each element

• FrontEnd Side - upon pressing the initialize bounding box, this route of the
BackEnd is being called using an AJAX POST request. The request is passed
using the input fields as parameters of the query.

• Program Side Algorithm - we call the ’get selection boxes from PDF’ provided
by our program. This functions basic structure is :

def get_selection_boxes_from_PDF(input):

Get layout(pdfminer object) of the PDF
layout = get_PDF_layout(pdf_path)

#Compile all regexes
regs_all = [re.compile(patterns)]

#Read line by line and
#get the lines corresponding to elements
lines = get_lines_by_pages(layout)
ele_lines, ele_line_indices = get_element_lines(lines,

regs_all)
#Style based detection
if use_style:

ele_lines, ele_line_indices = modify_element_
lines_style(lines, ele_lines, ele_line_indices)

#Add the metadata regexes
regs_all_w_meta = regs_all + [re.compile(pattern)

for pattern in meta_regex_patterns]

#Get the coordinates of the Element Selection Boxes
ele_boxes = get_ele_Bboxes(lines, ele_lines,

ele_line_indices, meta_regex_patterns)

#Get the selection box list
selection_boxes = get_selection_boxes(layout,

ele_boxes, regs_all_w_marks)

#In case of MCQ questions extract
#the options in the selection boxes
if question_type == 'MCQ':

selection_boxes = extract_options(selection_boxes,
mcq_reg)

return selection_boxes

20

Here we would like to mention a small detail/caveat in the get selection boxes func-
tion. The pdf has certain dimensions and the coordinates are displayed in those
dimensions, but the way we are displaying the PDF in the FrontEnd the size of the
displayed PDF is fixed for uniformity. Thus the coordinates in the FrontEnd are dif-
ferent that those in the BackEnd. The aspect ratio of the PDF is maintained which
gives us a way of interchanging the coordinates.

21

5 Implementation Details

The code for our project can be found here [6]. This section describes the major tools
and software used in the various components of the project.

5.1 PDF Extraction

This is a python3 based implementation. The packages used are

• PDFMiner: Extract text and metadata from the PDF

• PyPDF2: Extract images from the PDF

5.2 BackEnd

The BackEnd server is implemented using Python Flask framework

5.3 FrontEnd

The FrontEnd web application is designed using Vue.js framework. The application
is hosted on a node server(functionality provided by Vue itself). Additional npm
packages used are

• vue-js-modal: Create a modal view

• jquery: Send AJAX requests to BackEnd server

22

6 Conclusion and Future Work

We studied and analyzed the previous work [1] and extended it by modifying the
program at certain points where they didn’t produce desirable outputs. We analyzed
multiple PDF based question papers and tried to incorporate generalized features
to the program with the aim of providing desirable outputs. We analyzed various
intelligence based methods and went ahead with the regex based approach because
of its simplicity and effectiveness.

We solve the major problem of providing the manual verification, by our Visual
Editing Software implementation.

We recognize that working with PDFs can be quite difficult since most of the open
source libraries are not well documented and do not work under all circumstances.
Moreover, each library provides only certain functionalities. Building a tool to extract
data from PDFs often requires the usage of multiple libraries.

6.1 Future Work

The tool we have built is to populate the existing Question Bank Database. So
integration of the tool with the Question Bank interface is essential. The interface is
built as a Django project which can redirect PDF Question Papers to our tool which
can be hosted independently.

6.1.1 PDF Extraction

• Image extraction is incomplete, partly due to non existence of a single library
to extract all kinds of images. Proper integration of various python packages
can lead to a good image extraction model

• Extracting tables from the PDF. Python pdfplumber package can be used for
extracting tables

• Extracting math equations from the PDF. For math equations, [3] can be used
for math equation detection where as [4] can be used for math equation extrac-
tion to a latex code

• Incorporate format of paper into the existing code(ex:- QAQAQA, QQQAAA)
for better detection of various elements

• Block Number based approach to detect selection boxes spread around multiple
pages for a single element. Basically this approach assigns a block number to
each selection box, and so the boxes spread across pages will have different

23

block number and the box with block number as 1 is the starting box for that
element.This approach is more robust than the current method used.

• More robustness in style based answer detection code by trying out various
other approaches

• Machine Learning based approaches like the ones mentioned in [5] to detect
questions and answers in the paper. These approaches should be able to provide
sufficient accuracy guarantees

6.1.2 FrontEnd UI

• Design an alternate approach for taking regex inputs so that users can enter
them with ease. The current approach has limited select options and the input
for ’Other’ case is only taken as an exact regex

• Provide option to give multiple regexes as input for any element

• Current UI implementation is not fast and efficient, which is a necessity for a
good software application. The UI has to be made light-weight for more user
friendly experience

• Improve the display features of the current UI

• Sanity checks while passing on the inputs should be carefully implemented at
necessary places

24

7 Acknowledgement

We wish to express our sincere gratitude to Prof. Kameswari Chebrolu for her con-
stant guidance and support. We would like to thank Sai Sharath and Nagendra
Reddy, who initiated this work and Vamsi Krishna and Tanvi Jadhav for helping us
with FrontEnd and BackEnd implementations. Also, Yashasvi Sriram for his sugges-
tions with UI related issues.

References

[1] Nagendra, Sai Sharath, “ QUESTION BANK REPORT”, RnD Project

[2] https://github.com/jsoma/kull

[3] http://www.iapr-tc11.org/archive/icdar2011/fileup/PDF/
4520b419.pdf

[4] https://snapcraft.io/mathpix-snipping-tool

[5] Tamura, Akihira, Takamura, Hiroya, Okumura and Manabu. ”Classification of
Multiple-Sentence Questions”. In Natural Language Processing – IJCNLP 2005
on, pg 426-437. IJCNLP 2005

[6] https://github.com/huzzzz/QB-PDF

25

https://github.com/jsoma/kull
http://www.iapr-tc11.org/archive/icdar2011/fileup/PDF/4520b419.pdf
http://www.iapr-tc11.org/archive/icdar2011/fileup/PDF/4520b419.pdf
https://snapcraft.io/mathpix-snipping-tool
https://github.com/huzzzz/QB-PDF

	Introduction
	Related Work
	Extraction from PDFs
	Interface for PDF Interaction
	Extraction from latex

	Extending the PDF Extraction Program
	Existing code Overview
	Migration from Python2 to Python3
	Modifications to the existing code
	Input the regex used for detection
	Complete creation of annotated boxes
	Fixing problems with PDFMiner
	Robust Indexing

	Major Architectural Changes
	Extraction of Subquestions, Answers and Metadata
	Font based detection of Answers
	MCQ Options Detection
	Changing the Model for storing the elements
	Extracting the elements in the form of text

	Visual Editing Tool
	Description
	Front End Program Flow
	Uploader
	Initialize Input
	Area Select
	Modal View
	Display Saved Text for Database

	BackEnd Architecture
	dbView
	savePDF
	submitChanges
	getTextForSelection
	getAllSelections

	Implementation Details
	PDF Extraction
	BackEnd
	FrontEnd

	Conclusion and Future Work
	Future Work
	PDF Extraction
	FrontEnd UI

	Acknowledgement

